Electrotherapy and hyperbaric oxygen: Promising treatments for postradiation complications

The University of Texas M. D. Anderson Cancer Center, Houston, Tex.

Electrotherapy and hyperbaric oxygen therapy have been added to physical therapy to treat patients with postradiation sequelae. Problems of reduced oral opening and range of head movement were addressed in 37 patients over a 3-year period. Of this group, 16 irradiated maxillary resection patients were specifically followed up to determine the effectiveness of the new modalities on improving reduced oral opening. Although healing and the quality of the soft tissues showed marked improvement there was no significant improvement in oral opening (J Prosthet Dent 1989;62:331-4.)

Patients treated for head and neck cancer have developed postradiation problems since radiation was first

*Presented at the Academy of Denture Prosthetics meeting, Freeport, Grand Bahama Island.
**Chairman, Department of Dental Oncology and Professor of Dental Oncology.
***Physical Therapist.
****Associate Dental Oncologist and Assistant Professor of Dental Oncology.
*****Associate Dental Oncologist and Associate Professor of Dental Oncology. 10/1/12279

used as anticancer therapy. Although radiation therapists have made great improvements in minimizing exposure of healthy tissues to the radiation beam, postradiation complications continue. The acute problems encountered during radiotherapy and the problems associated with the progressive ischemia of irradiated tissues are usually treated symptomatically.

The major postradiation problems that the maxillofacial prosthodontist tries to resolve or prevent are radiation caries, xerostomia, reduced vertical opening, and a decreased range of head and neck motion. Of these, reduced vertical opening is the most perplexing. Histologically,
dentists have used a variety of mechanical devices such as
stacked tongue blades, plastic screws, and dynamic bite
openers to help patients to open wider. However, closing the
mouth is more difficult to perform without exercises to regain a normal opening af
after surgery and radiation has met with results that vary with patient compliance and the circumstances of disease and treatment.

Results of attempts to increase vertical opening are of
ten disappointing. Therefore, during the past 3 to 4 years, dental oncologists and physical therapists at the University of Texas M. D. Anderson Cancer Center have worked together to develop new ways of resolving postirradiation morbidity. The modalities most often used are traditional physical therapy, electrotherapy, auriculotherapy, and hyperbaric oxygen therapy.

Physical therapy alone has little new to offer. Manual
stretching and managing and home exercises are used to
adequate function, restore free-moving facial tissues, and im-
prove circulation. However, in an irradiated field, circula-
tion is improved only minimally by physical therapy.
However, various combinations of physical therapy and the
other modalities have had some success in restoring a more
normal range of motion and neuromuscular health. This
article will discuss the use of these modalities in managing
patients with a reduced vertical opening.

ELECTROTHERAPY

Electrotherapy has been applied empirically for many
years in many ways. Its use by charlatans and quacks at the
turn of the century led the medical community to almost
entirely abandon its use. Fortunately, scientists (primarily
neurophysiologists) in the 1940s began to study the effects
of direct current and electromagnetic fields on living
organisms and organ systems.2,3

In the 1960s external voltage was found to stimulate bone
growth,4 and in the 1970s electromagnetic energy was ap-
plicated to bone healing problems.5,6 During this period it was
also discovered that an electromagnetic field could alter
cellular-membrane permeability.7 In contrast to the milliam-
pere currents used for transcutaneous electrical nerve sti-
ulation, therapeutic currents are applied at microam-
pere levels.

Interestingly, auriculotherapy is related in principle to
acupuncture, which has been practised in China for thou

sands of years. Acupuncture has only recently been ac-
cepted by Western medicine, and its mechanism of action
is still not understood.8 It is recognized, however, that by
stimulating specific acupuncture points, a neurophysi-
ologic effect is produced on the body by altering the electric
-coxial system.9

More recently, Nagai10 discovered and developed what is
now called auriculotherapy. Auriculotherapy is similar to
acupuncture, but the only points stimulated are those on or
about the ear. Nagai found that the points resemble an
inverted fetus, and, when points on the fetus are stimu-
lated, corresponding organs and areas on the body are af
fected. His discoveries were verified by the Chinese; differ-
ences correspond to differences between the philosophies of Chinese and Western medicine.11 Although the mecha
nism involved is not fully understood, investigators recog
nize that, as abnormal change in the body, such as disease or
pain, can be detected at its corresponding point on the ear.
Stimulation of that ear point and other appropriate points,
depending on the physiology involved, effects a corre
sponding change in the body.12 This form of therapy gained attention for its efficacy in treating sports injuries during the 1984 Olympics in Los
Angeles. A study done by the Department of Anesthesiol
ogy at the University of California at Los Angeles, School of
Medicine showed that physical problems could be detected by scanning ear points with an electric probe. Where pathosis existed, the corresponding ear point was
affected and elicited an electrically detectable re-
sponse.13

The treatment of sports injuries has shown that subject-
ing an injured region to an electromagnetic field of low in-
versity results in rapid dispersion of edema and hematoma.
This type of treatment is referred to as bioconductive therapy. In this therapy, electrodes are placed on either
side of an injured region and an electromagnetic field is di-
rected through it.

HYPERBARIC OXYGEN THERAPY

The use of hyperbaric oxygen for irradiated patients who have osteoradionecrosis or need surgery to heavily iradi
ated bone enhances wound healing.14,15 Soft-tissue oxygen
partial pressure (tensions) can be restored to approximately
80% of normal after 201.5-hour "dives" at 2.4 atmospheres
of 100% oxygen. Hyperbaric oxygen treatment requires
approximately 4 weeks and results in a revascularization of
the irradiated tissue beds. Hyperbaric oxygen enhances the
prognosis for carefully performed reconstructive surgery,
although additional dives after surgery may be needed to
ensure a successful outcome.

The major difficulties of hyperbaric oxygen treatment are
time and expense. The plight of cancer patients with
osteoradionecrosis and the cost of hyperbaric oxygen treat-
ment are recognized by insurance companies. How-
ever, other modes of payment must be found for patients
without insurance.

PATIENTS AND METHODS

Patients

Over a 3-year period, the Dental Oncology Department
monitored 37 patients with head and neck cancer with se-
quels of surgery and radiation therapy. Sixteen had
undergone a maxillary resection followed by radiation
therapy. All of the 16 patients experienced a decreased oral
opening, and some developed osteoradionecrosis.
Treatments

Initially each patient was referred to the Physical Therapy Department to receive auriculotherapy. This therapy was done with an Alpha Stim 3000 (Electromedical Products, Inc., Hawthorne, Calif.) instrument. Each patient was also given exercise instructions to attempt to retain or regain function.

After Bauer* and Boswell and Bauer17 reported that auriculotherapy of irradiated patients could be enhanced by bioconductive therapy (directing electromagnetic fields in microinjection of the fields being treated), the Dental Oncology Department acquired Alpha Stim 350 units (Electromedical Products, Inc.) and began to routinely treat irradiated regions in this manner. After some empirical adjustments it was found that a 50 µA current at 0.6 Hz provided the best results. Stronger currents seemed to enhance fibrous tissue regeneration and actually made the area "tighter."

In time, a treatment protocol evolved whereby all patients with postirradiation complications were sent to the physical therapists to receive exercise instruction, physical therapy, and electrotherapy, including both auriculotherapy and bioconductive therapy. Records were maintained on all 37 patients. The initial plan was to treat each patient daily for 3 weeks for a total of 10 treatments. Only six patients received the planned 10 treatments. Because of the diversity of the entire group, the 16 maxillary resection patients were selected to determine the effectiveness of the treatment protocol in preserving or regaining vertical oral opening after maxillary resection and radiation therapy.

Patients with osteoradionecrosis or soft tissue necrosis, or patients who needed teeth extracted from irradiated bone were referred for hyperbaric oxygen therapy. A single-source Seasham Chair (Seasham Industries, Inc., Medical Products Division, Anaheim, Calif.) was used. Three of the 16 maxillary resection patients developed osteoradionecrosis. Two received hyperbaric oxygen therapy and the third refused hyperbaric oxygen therapy and received electrotherapy only.

RESULTS

The conditions and treatments of the 16 irradiated maxillary resection patients were so varied that a valid comparison of the results of their treatment modalities was not possible.

The patients did not uniformly receive 10 treatments. Their treatments ranged from 1 to 57. A total of 57 treatments were given to one patient for radiation, and he died of his disease. Five patients had more than 20 treatments. Four patients chose to terminate their care after one to nine treatments. The patient who received nine treatments died of his disease; the patient who had three treatments had residual disease and died later. One patient had seven treatments, increased his oral opening from 11 mm to 16 mm, and has no evidence of disease. The patient who had only one treatment left the study after learning to use the Alpha Stim 300 biocovductive electrotherapy instrument. Osteoradionecrosis was reported in the three patients treated with hyperbaric oxygen and/or electrotherapy. Retaining or regaining decreased oral opening did not prove to be enhanced specifically by the treatment protocol.

DISCUSSION

Of the first patients treated by auriculotherapy alone it had received 70 Gy external beam radiation bilaterally to metastatic disease in the neck after a marginal maxillary resection for squamous cell carcinoma of the gingiva. Her face and neck had the typical darkly pigmented, hard, allograft hide texture where she had been irradiated. In addition to the normally preserved head and neck exercises, she received 10 treatments of auriculotherapy over a period of 2 weeks.

At the end of the 2-week period, a marked change had occurred in the texture and color of the irradiated tissues. During the auriculotherapy her head and lower face became warm, to the point that one could believe hot compresses were being applied. Apparently there was a marked increase in blood flow and cellular metabolism within this area. This warmth led to the assumption that the combination of increased blood flow and increased cell membrane permeability was allowing tissues to repair and revascularize in an area that would otherwise experience progressive ischemia and fibrosis.

Hyperbaric oxygen therapy has produced impressive results in a number of patients. Commonly, the texture of the irradiated soft tissues improves markedly. Patients may perceive the change as feeling their tissues swell, and dentists must frequently adjust obturators to accommodate these changes. Patients also report increased mucous secretions and sensation in irradiated areas. Drainage fistulas heal. Surgeons can remove teeth in irradiated mandibles and achieve good healing.

Although hyperbaric oxygen therapy has improved soft tissue quality, it has not helped to increase vertical oral opening. Efforts to restore decreased oral opening have been disappointing. Patients who receive postmaxillary resection radiation usually have a protractor oral opening, measured between incisors, of 40 to 50 mm. If patients do not exercise vigorously enough to regain the original vertical opening between surgery and the beginning of radiation therapy, they frequently find their opening reduced to approximately 20 mm when radiation therapy begins. At the end of the radiation treatment the oral opening has usually decreased to approximately 10 mm. By using exercises and electrotherapy, the oral opening may be increased to approximately 20 mm at best. If necrosis or residual or recurrent disease is present in the

*Bauer W. Personal communication, 1980.
pterygoid muscles, the patient may continue to lose oral opening. No more than 210 to 3 mm can be regained for these patients.

The clinical impression at M. D. Anderson Cancer Center is that electrotherapy and hyperbaric oxygen is achieving a degree of tissue repair and revascularization of the irradiated field. Patients who have experienced wound breakdowns, oral-facial fistulas, soft tissue necrosis, or osteonecrosis in irradiated fields have had enhanced wound healing after 3 to 4 weeks of electrotherapy and hyperbaric oxygen therapy. In some patients both treatments were applied simultaneously, with electrotherapy after each hyperbaric oxygen treatment.

CONCLUSION

Electrotherapy and hyperbaric oxygen therapy have been used at M. D. Anderson Cancer Center to combat some sequelae of radiation to the head and neck. Although it is still unclear what is specifically occurring physiologically and histologically, the irradiated soft tissues appear to become revascularized. It is apparent that these modalities have relieved discomfort, enhanced healing of irradiated hard and soft tissues, and improved the quality of the irradiated soft tissues. Unfortunately they have not been effective in restoring decreased oral opening. Further clinical and basic research is needed to understand and potential applications of each of these modalities.

REFERENCES

Bound volumes available to subscribers

Bound volumes of the Journal of Prosthetic Dentistry are available to subscribers (only) for the 1989 issues from the publisher at a cost of $44.00 (in Canada) for Vol. 61 (January-June) and Vol. 52 (July December). Shipping charges are included. Each bound volume contains author and subject indexes, and all advertising is removed. Copies are shipped within 30 days after publication of the last issue in the volume. The binding is durable buckram with the journal name, volume number, and year stamped in gold on the spine. Payment must accompany all orders. Contact The C. V. Mosby Co., Circulation Department, 11830 Westline Industrial Drive, St. Louis, MO 63146-3518, USA, phone (800) 325-4177, ext. 351. Subscriptions must be in force to qualify. Bound volumes are not available in place of a付行 Journal subscription.

SEPTEMBER 1989 VOLUME 61 NUMBERS 3